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A Appendix
A.1 Details of Each Scene
Statistics. Detailed statistics for each of the 16 distinct sequences
in OinkTrack are presented in Tab. A1. This table underscores the
dataset’s rich diversity, particularly with regard to illumination
conditions, as it includes sequences that deliberately capture day-
time, nighttime, and critical day-to-night as well as night-to-day
transitions. Crucially, the video segments cover a comprehensive
24-hour cycle, spanning early morning (e.g., 05:00-08:00), midday
and afternoon (e.g., 11:00-17:00), through to the evening and deep
night (e.g., 17:00-00:00). This extensive temporal coverage provides
an invaluable resource for analyzing the diurnal behavioral patterns
of group-housed pigs and for rigorously evaluating the robustness
of MOT algorithms under evolving natural and artificial lighting.
The sequences themselves range in duration from approximately
one minute to an entire hour, and each features a consistently high
number of tracked individuals (averaging 35.88 pigs) and a substan-
tial volume of bounding box annotations. This detailed breakdown
reaffirms OinkTrack’s unique position as a benchmark for studying
challenging, long-term tracking in realistic and densely populated
livestock environments.
Visualization. Fig. A1 showcases more representative annotated
frames from diverse sequences within OinkTrack and illustrates the
variety of conditions and challenges present. These visualizations
reveal pigs that engage in a wide array of natural behaviors, includ-
ing resting, sleeping, playing, agonistic interactions (fighting), and
feeding. The extended duration of our collected videos ensures that
individual pigs often exhibit multiple distinct behaviors throughout
a single sequence, which potentially leads to significant variations
in their visual appearance and posture over time. This behavioral di-
versity, coupled with the extreme length of the recordings, presents
a substantial challenge for MOT algorithms, as a tracker must main-
tain identity consistency despite these appearance shifts. Further-
more, the figure highlights the distinct illumination characteristics
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Table A1: Statistics of each scene in OinkTrack

Scene Time Lighting Len. (min) Tracks Boxes

C1D-1 08:00-08:01 Day 1 34 2000
C1D-2 11:00-11:10 Day 10 34 18278
C1D-3 07:00-07:30 Day 30 36 60254
C1DN-1 16:00-17:00 Day-night 60 36 116668
C1N-1 18:00-18:01 Night 1 32 1834
C1N-2 17:50-18:00 Night 10 33 18723
C1N-3 23:30-00:00 Night 30 36 60180
C1ND-1 05:00-05:30 Night-day 30 36 58502
C2D-1 15:00-15:01 Day 1 34 1666
C2D-2 14:15-14:30 Day 15 39 25097
C2DN-1 16:30-17:00 Day-night 30 40 51893
C2N-1 17:00-17:01 Night 1 34 1746
C2N-2 04:50-05:00 Night 10 36 18985
C2N-3 17:15-17:30 Night 15 36 29090
C2N-4 04:30-05:00 Night 30 38 52750
C2ND-1 05:15-05:45 Night-day 30 40 56130

between daytime and nighttime (IR) scenes, a key factor that con-
tributes to tracking difficulty. Instances where other pigs or pen
structures occlude individuals and subsequently reappear are also
evident; this is a common occurrence in our long-duration, crowded
footage that poses a significant test for a tracker’s ability to perform
stable, continuous tracking and re-identification.

A.2 Implementation Details.
We benchmark OinkTrack using 11 distinct MOT algorithms. All
models are trained on a system equipped with four NVIDIA V100
GPUs.

For the tracking-by-detectionmethods (SORT [1], DeepSORT [8],
MOTDT [3], ByteTrack [11], OC-SORT [2], StrongSORT and its
enhanced variant StrongSORT++ [4], and Hybrid-SORT [9]), we
consistently employ YOLOX-X [7] as the object detector. The input
size for YOLOX-X is set to 1280 × 736. To ensure a fair comparison,
we first pre-train a single YOLOX-X model on the OinkTrack train-
ing set for 80 epochs, following the default configuration specified
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Figure A1: Visualization of annotated frames in different scenes.

in ByteTrack. This single pre-trained detector then provides object
detection for all models within this category.

For the transformer-based models (MOTR [10], MeMOTR [6],
and MOTIP [5]), we adhere to the training configurations detailed
in their respective original publications. Specifically, MOTR and
MeMOTR are trained for 20 epochs, while MOTIP is trained for 10
epochs.

A.3 More Qualitative Results.
Fig. A2 presents a qualitative assessment of tracking performance by
comparing ground truth (GT) trajectories with predictions from se-
lected state-of-the-art trackers—SORT [1], ByteTrack [11],MOTR [10],
MeMOTR [6], Hybrid-SORT [9], and MOTIP [5]. The compari-
son uses representative OinkTrack instances across diverse tempo-
ral stages and illumination conditions (e.g., C2N-4, C2N-1, C2D-1,
C1DN-1). In shorter temporal segments, visual inspection reveals
that transformer-based architectures like MeMOTR and MOTIP
generally achieve superior tracking fidelity. They maintain more
consistent identities and accurate localization compared to the
tracking-by-detection method, ByteTrack, which exhibits a more
noticeable proneness to missed detections. This initial robustness
of transformer models is attributable to their sophisticated spatio-
temporal reasoning capabilities.

However, the critical challenge of extremely long-term track-
ing, a core feature of OinkTrack, becomes evident over extended
durations. In these scenarios, even leading approaches, including

MeMOTR and MOTIP, begin to falter. We observe instances of iden-
tity loss, where individuals are no longer tracked, and significant
path deviations, which indicate accumulated localization errors.
These qualitative failures become more pronounced in the later
stages of long sequences and underscore the severe test that Oink-
Track poses for sustained identity preservation and continuous
localization. The visual evidence in Fig. A2 strongly corroborates
our quantitative results and confirms that achieving robust, uninter-
rupted, and accurate end-to-end tracking inOinkTrack’s demanding
agricultural environments remains a significant open problem and
a fertile ground for future research.

A.4 Full Results of Scene Analysis
Analysis of Illumination Condition. We provide a full break-
down of performance across different illumination conditions in
Tab. A2. All evaluated methods achieve their best results in daytime
scenes, significantly outperforming their performance under other
conditions. An interesting observation arises when comparing day-
night transition scenarios against purely nighttime ones: while
detection accuracy (DetA) is often higher during transitions than in
consistent nighttime, the overall tracking accuracy (HOTA) tends
to be worse. A closer examination reveals a dramatic decrease in
association accuracy (AssA) during these transitions. This suggests
that while objects may be more readily detectable during the shift-
ing light of transitions, the rapid and drastic changes in individual
appearance due to varying illumination severely impair the models’
ability to maintain consistent associations.
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Figure A2: Qualitative results of ground-truth and the predictions of SORT [1], ByteTrack [11], MOTR [10], MeMOTR [6],
Hybrid-SORT [9], and MOTIP [5] on different scenes.

Table A2: Overall evaluation results of different algorithms on OinkTrack test set.

Method Day Night Cross

HOTA↑ MOTA↑ DetA↑ AssA↑ IDF1↑ IDsw↓ HOTA↑ MOTA↑ DetA↑ AssA↑ IDF1↑ IDsw↓ HOTA↑ MOTA↑ DetA↑ AssA↑ IDF1↑ IDsw↓
SORT [1] 50.9 69.0 55.3 48.1 60.8 207 35.5 40.0 40.2 32.3 39.2 512 23.8 58.1 48.2 11.9 24.8 2033
DeepSORT [8] 49.6 65.9 54.4 46.4 58.1 216 34.5 39.1 40.5 30.7 37.4 567 22.8 57.5 48.4 10.9 23.0 2506
MOTDT [3] 42.3 66.1 55.0 34.0 48.1 546 31.5 39.0 39.9 25.9 34.1 1213 19.5 55.2 47.8 8.0 19.1 6622
ByteTrack [11] 48.6 67.4 54.7 44.5 59.2 158 35.0 40.9 41.4 30.8 38.9 397 24.2 59.7 48.4 12.2 26.3 1771
MOTR [10] 55.9 71.6 58.7 54.2 65.9 189 41.9 62.1 55.5 31.9 43.9 532 26.8 64.4 56.0 12.9 25.1 1715
OC-SORT [2] 49.9 67.9 54.5 46.9 59.6 164 35.2 39.6 38.4 32.8 39.0 377 23.3 56.0 46.7 11.6 25.1 1683
StrongSORT [4] 46.8 65.3 53.6 42.5 53.5 215 33.2 39.6 39.8 28.9 37.0 604 22.1 55.8 46.8 10.6 22.6 3127
StrongSORT++ [4] 46.3 61.8 52.3 42.7 53.1 186 33.8 38.0 40.4 29.6 37.1 484 21.9 49.5 45.3 10.8 22.1 2635
MeMOTR [6] 59.5 79.9 64.5 55.7 71.7 134 48.5 68.0 59.3 40.2 53.3 352 35.8 75.3 62.4 20.7 37.4 1349
Hybrid-SORT [9] 50.2 68.7 55.2 46.9 59.9 192 36.2 38.4 41.5 32.6 38.8 619 24.2 57.9 49.3 12.0 24.8 2122
MOTIP [5] 58.4 82.5 66.5 52.3 70.9 420 53.6 64.7 59.2 49.0 61.7 1387 35.9 78.2 64.9 19.9 38.8 6047

Table A3: Evaluation results of different video lengths on OinkTrack test set.

Method ≤ 1 min 30 min 60 min

HOTA↑ MOTA↑ DetA↑ AssA↑ IDF1↑ IDsw↓ HOTA↑ MOTA↑ DetA↑ AssA↑ IDF1↑ IDsw↓ HOTA↑ MOTA↑ DetA↑ AssA↑ IDF1↑ IDsw↓
SORT [1] 50.1 63.5 51.9 49.8 60.1 327 27.0 39.4 38.6 19.2 30.2 970 23.2 63.5 51.8 10.5 23.0 1455
DeepSORT [8] 48.1 61.5 51.6 46.6 56.0 381 26.9 38.8 39.0 18.9 29.6 1082 21.9 62.8 51.8 9.4 20.9 1826
MOTDT [3] 43.2 61.2 51.7 37.8 49.5 918 23.0 37.6 37.9 14.2 25.1 2452 19.1 60.6 51.6 7.1 17.6 5011
ByteTrack [11] 48.5 63.0 51.9 46.8 59.4 254 27.2 40.9 39.7 19.0 30.7 791 23.4 64.9 51.7 10.7 24.5 1281
MOTR [10] 54.6 70.0 59.0 51.1 62.3 350 33.7 59.9 53.1 21.6 34.4 875 24.9 66.2 57.5 10.8 22.6 1211
OC-SORT [2] 49.2 61.7 50.5 49.0 58.6 255 26.5 38.2 36.3 19.5 30.3 734 22.9 61.6 50.9 10.3 23.5 1235
StrongSORT [4] 45.7 60.8 50.5 42.8 53.3 372 25.3 38.6 38.0 17.1 28.3 1243 22.1 60.9 50.2 9.8 21.2 2331
StrongSORT++ [4] 45.6 58.5 50.0 43.2 53.2 306 25.8 35.9 38.7 17.7 28.1 1082 21.7 53.5 47.8 10.0 20.7 1917
MeMOTR [6] 59.1 78.1 64.3 55.0 70.3 247 40.9 65.5 56.8 29.7 44.4 656 35.3 79.3 65.3 19.1 35.7 932
Hybrid-SORT [9] 49.5 63.0 52.1 48.2 58.6 324 28.4 38.4 40.4 20.2 30.5 1089 23.5 63.2 52.5 10.5 23.0 1520
MOTIP [5] 60.3 80.3 66.2 55.7 72.8 828 45.8 64.5 58.6 36.0 52.7 2594 33.5 82.1 66.9 16.8 34.4 4432

Furthermore, models based on transformer architectures exhibit
relatively more stable performance across all lighting conditions, in-
dicating stronger adaptability to illumination changes compared to
traditional tracking-by-detection methods. Approaches like SORT
and DeepSORT, for instance, particularly struggle when faced with
the combined challenges of high-density or occluded environments
under nighttime or transitional lighting. The abrupt shifts in illu-
mination during transitions induce substantial changes in target
appearance, making it difficult for these models to maintain contin-
uous and accurate tracks. This fine-grained analysis underscores
the significant challenge posed by abrupt illumination changes

and highlights the critical role of robust appearance modeling and
temporal context integration for stable long-term tracking.
Analysis of Video Length. We further analyze model perfor-
mance across video sequences of varying durations, with detailed
results presented in Tab. A3. Our experimental observations in-
dicate that while object detection performance (DetA) remains
relatively stable irrespective of sequence length, overall tracking
performance (HOTA) and identity preservation (IDF1) deteriorate
notably in longer sequences. This decline is primarily attribut-
able to an increased accumulation of errors, leading to more fre-
quent identity switches and trajectory disruptions over extended
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periods. In general, traditional tracking-by-detection pipelines ex-
hibit greater instability as sequence duration increases, reflected in
more pronounced declines in IDF1 and HOTA scores. By contrast,
transformer-based models such as MOTIP and MeMOTR, which
leverage query-based attention mechanisms or explicit long-term
memory components, demonstrate higher consistency and robust-
ness throughout prolonged sequences. This analysis affirms the
intrinsic challenges of long-duration tracking and underscores the
significance of OinkTrack for evaluating and advancing temporal
continuity and identity persistence in extended video scenarios.
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